Screen Activity
Enable this model configuration to captures the visual activity in a conversation
Identify and analyze the visual aspects of the meeting along with the corresponding timestamps and with Screen Activity API.

Activity | Description |
Speaker/Interaction | when the meeting/conversation has no visual elements or if it is face-to-face (video is ON) conversation. |
Sketching/whiteboarding | detects when there is whiteboarding or sketching in the meeting |
Presentation | detects full-screen presentations during the meeting |
Screen Share | detects general screen share like browsing through the computer, webpages, etc. during a screen share session. |
Speaker Face | Detect when the speakers face is displayed in the meeting. |
Keys | Value |
modelType | screen_activity |
modelConfig | Model Configuration object for screen_activity |
Curl
Python
curl --location --request POST 'https://api.marsview.ai/cb/v1/conversation/compute' \
--header 'Content-Type: application/json' \
--header "authorization: {{Insert Auth Token}}" \
--data-raw '{
"txnId": "{{Insert txn ID}}",
"enableModels":[
"modelType":"screengrabs",
"modelConfig":{
"ocr":{
"enable":true
},
"screen_activity" : {
"enable" : true,
"classes" : ["drawing","ppt","screen',"speaker_face","speaker_presentation"]
}
}
},
{
"modelType":"screen_activity"
}
]
}'
import requests
auth_token = "replace this with your auth token"
txn_id = "Replace this with your txn id"
request_url = "https://api.marsview.ai/cb/v1/conversation/compute"
def get_screen_activity():
payload={
"txnId": txn_id,
"enableModels":[
{
"modelType":"screengrabs",
"modelConfig":{
"ocr":{
"enable":True
}
}
},
{
"modelType":"screen_activity"
}
]
}
headers = {'authorization': '{}'.format(auth_token)}
response = requests.request("POST",headers=headers, json=payload)
print(response.text)
if response.status_code == 200 and response.json()["status"] == "true":
return response.json()["data"]["enableModels"]["state"]["status"]
else:
raise Exception("Custom exception")
if __name__ == "__main__":
get_screen_activity()
"data": {
"meetingActivity": [
{
"shotId": 1,
"startFrame": 1,
"endFrame": 3237,
"meetingActivity": [
{
"className": "speaker_fused"
}
],
"meetingActivityAccuracy": {
"speakerFace": "3.0225227"
},
"startTime": 66.66666666666667,
"endTime": 215800
}
}
Field | Description |
meetingActivity | List of meeting activity objects |
shotId | Id of the collection of frames being analyzed |
startFrame | First frame of the specified shotId |
endFrame | Last frame of the specified shotId |
meetingActivity[meetingActivity] | Type of meeting activity identified in the shotId |
className | Type of class best describing the type of screen activity |
meetingActivityAccuracy | Object speicying the accuracy of the predicted meeting activity |
speakerFace | |
startTime | Start time of the shotId in milliseconds |
endTime | Start time of the shotId in milliseconds |
Last modified 2yr ago